
Kuncheng Feng

CSC 466 Presentation

Improved Statistics

Abstract

The “getStatistics” function under “Main.l” has been improved to keep track of

a few more values, including average number of turns, and average shots achieved by

each player.

Code

Due to the time constraints on presentation time, only the top level code is

shown, the functions do exactly what its name suggests, and the full code can be

found under the “snapshot” folder where this PDF resides.

The “getStatistics” function asks the user for what types of AI they should play

against each other, and asks for how many games they should play.

It then accumulates the statistics gathered from those games and displays

them.

(defun getStatistics(&aux p1Type p2Type iterations counter gameStatistics)

; Get user input

(format t "Available AIs: ~%")

(dotimes (n (length *AIs*))

(format t "~A - ~A~%" (+ n 1) (nth n *AIs*))

)

(format t "Enter a corresponding number to choose AI 1: ")

(setf p1Type (read))

(format t "Enter a corresponding number to choose AI 2: ")

(setf p2Type (read))

(format t "Enter the number of iterations: ")

(setf iterations (read))

; Some setup

(setf gameStatistics (newGameStatistics))

(format t "Simulating games ...~%~%")

(setf counter 0)



; Entering the main loop

(dotimes (i iterations)

(combineResult gameStatistics (quickGame p1Type p2Type))

; This is for periodic update at the terminal, since I don't like

to stare at

(setf counter (+ counter 1))

(if (= counter 50)

(progn

(setf counter 0)

(format t "~A games played...~%" (+ i 1))

)

)

)

(displayStatistics gameStatistics)

)

The “quickGame” function asks for what type of players are desired, set up the

players, and have them play one game. Then it returns the result of that game.

(defun quickGame(player1Type player2Type &aux player1 player2 ships1

ships2 board1 board2 turns winner player1Hits player2Hits)

; Initialize the game

(setf board1 (newBoard 10 10))

(setf board2 (newBoard 10 10))

(setf ships1 (reverse (generateShips)))

(setf ships2 (reverse (generateShips)))

(setf player1 (createPlayer player1Type board1 board2 ships1))

(setf player2 (createPlayer player2Type board2 board1 ships2))

(playerPlaceShips player1)

(playerPlaceShips player2)

(setf winner nil)

(setf turns 0)

; Main game loop

(loop while (equal winner nil) do

(playerOpenFire player1)

(playerOpenFire player2)

(setf turns (+ turns 1))



(setf winner (getWinner player1 player2))

)

; Count the hits achieved on the opponent

(setf player1Hits (countHits ships2))

(setf player2Hits (countHits ships1))

(newGameResult turns winner player1Hits player2Hits)

)



Demo

[2]> (getStatistics)

Available AIs:

1 - RANDOMPLAYER

2 - RANDOMPLAYERPLUS

3 - RANDOMPLAYERPLUSPLUS

4 - TIERLISTPLAYER

5 - TIERLISTPLAYERPLUS

6 - TIERLISTPLAYERPLUSPLUS

Enter a corresponding number to choose AI 1: 1

Enter a corresponding number to choose AI 2: 2

Enter the number of iterations: 100

Simulating games ...

50 games played...

100 games played...

Game statistics:

Number of games played: 100

Average number of turns: 65.916824

Player 1 victories: 2

Player 2 victories: 98

Draws: 0

Average hits achieved by player 1: 10.761697

Average hits achieved by player 2: 17.0

NIL

The full statistics of each players will be shown on the next presentation.


